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SUMMARY 

The method of non-standard finite elements was used to develop multilevel difference schemes for 
linear and quasilinear hyperbolic equations with Dirichlet boundary conditions. A closed form equation 
of kth-order accuracy in space and time (O(At", Ax")) was developed for one-dimensional systems of 
linear hyperbolic equations with Dirichlet boundary conditions. This same equation is also applied to 
quasilinear systems. For the quasilinear systems a simple iteration technique was used to maintain the 
k th-order accuracy. 

Numerical results are presented for the linear and non-linear inviscid Burger's equation and a system 
of shallow water equations with Dirichlet boundary conditions. 
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1. INTRODUCTION 

Quasilinear hyperbolic equations are of fundamental importance in Auid dynamics. Several 
canonical examples of such equations are (i) the inviscid Burger's equation, (ii) the shallow 
water (compressible gas) equations, and (iii) the Lundquist equations. 

As a stepping stone to the numerical solution of the quasilinear equations with their 
corresponding boundary and initial data, it is reasonable to first examine linear hyperbolic 
equations or equivalently a linearization of the quasilinear equations. Once we have 
mastered the solution techniques for the linear equations we may attempt to generalize these 
techniques to the quasilinear setting. 

There exist many high order accurate difference schemes for quasilinear hyperbolic 
equations, e.g. Lax and Wendroff,' S t r a ~ ~ g , * ~  Rusanov,5 Cushman and Huang,6 Abarbanel et 
aL7 Watanabe and Flood,* Fornberg,' Kreiss and Oliger,"' Burnstein and Mirin," and Zwas 
and Abarbanel." In general these schemes are analysed independent of the boundary 
conditions, and the schemes are rarely of order higher than four. One of the major problems 
encountered when using high order accurate difference schemes is in the incorporation of 
boundary conditions with a consistent order of accuracy. For example, the high order 
accurate schemes of Strang2-4 supply no insight into how one can incorporate high order 
accurate boundary conditions into the solution of an equation. 

It is the purpose of this paper to illustrate a method which, at least in the case of Dirichlet 
boundary conditions for quasiliner hyperbolic equations, alleviates this problem. Before 
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proceeding further we should remind the reader that it is only necessary to examine first 
order equations, for higher order equations can always be reduced to first order. 

For quasilinear hyperbolic equations with Dirichlet boundary conditions, the technique of 
non-standard finite elements6 is a viable method for developing compatible high order 
accurate boundary conditions. To this end we first briefly review non-standard finite 
elements as applied to linear hyperbolic equations. 

Consider the following elementary examples: 

where c is a positive constant and 

where 

u = ( u , v ) ~  and c = ( ~  0 c  *). 
It is well known13 that the characteristic data f c determine the domain of dependence of 

equation (2). That is, u(x, t) depends only on information contained between lines of slope 
f l / c  in the (x, t)-plane below the point (x, t )  (see Figure 1 (b)). 

This same type of relationship holds in a curvilinear fashion for quasilinear systems 
(providing that the characteristics form a non-singular curvilinear co-ordinate system in a 
neighborhood of a point (x, t ) )  of hyperbolic equations (Figure l(a)). One is thus motivated 

Q=O Q=l 

t = ( n  +I)ni 

t=nAt 

C 

Figure 1. (a) A curvilinear data set for a 
quasilinear hyperbolic equation. (b) A linear 
characteristic data set for a linear equation. (c) 
The definition of the geometry factor a with 

k th-order polynomial interpolation 
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to consider developing finite element or finite difference schemes which, at any point in 
space-time, contain only information in and near the characteristic data sets. With this in 
mind it seems plausible to apply an orthogonalization method to a single element or 
collection of elements which contain the characteristic data. For the linear equations ((1) and 
(2)) it suffices to consider linear triangular elements, or more generally for the quasilinear 
equations one might use isoparametric triangular elements. For the sake of illustration we 
will use only linear triangles and consider only a single element. 

We now introduce a geometry factor a defined as shown in Figure 1 (c). The parameter a 
controls the shape of the triangular element over which the orthogonalization method is to 
be applied. For each choice of a, we will define a unique finite difference scheme by applying 
the orthogonalization method to the triangle with geometry factor a. As we will see, a small 
variation in a will create (in the obvious sense) a small variation in the corresponding 
difference scheme, and we speculate a corresponding small change in the stability range of 
the schemes. 

Suppose now that we apply Galerkin’s method to (1) (with kth-order Lagrange interpolat- 
ing polynomials as test functions) over the element in Figure 1 (c). Here of course we are 
assuming that the nodal spacing corresponds to that of Pascal’s triangle. We thus arrive at 
the system of equations 

where 

u, is the known (or unknown) value of u at node j ,  #L is the kth-order Lagrange 
interpolation polynomial, and R is the area of the triangular element. The reader should 
carefully note that we are considering only one element and hence there is no assemblage 
process as usually associated with finite elements. 

When using kth-order interpolation over one element the Galerkin process will produce a 
system of ( k  + l ) ( k  + 2)/2 simultaneous equations. The linearity of the equations will depend 
o n  whether or not the underlying P.D.E. is linear. In either case we may in general eliminate 
from the system of equations the equations corresponding to the nodes with known nodal 
values of u (see Figure 2). If we assume that exactly k + 1 nodes have known nodal values of 
u, then we may partition A,, as follows: 

where B, has dimension (k + 1) x ( k  + 1)( k + 2)/2 and corresponds to the equations with 
known nodal values of u, Cmn has dimension ( k +  l )k /2x (k+1)  and corresponds to the 
remaining coefficients of A,, that are multiplied by known nodal values of u, and finally Dmp 
has dimension ( k  + l)k/2 x ( k  + 1) k /2  and corresponds to the coefficients in A, that are 
multiplied by the unknown nodal values of u. A simple computation will show that Dmp is 
non-singular. It is clear that the unknown nodal values of u are given by 

up = -D-’ mp CmnU, (6) 
where u, contains the unknown nodal values of u and un contains the known nodal values of 
u. In practice we are quite often interested only in the ith value u:’ in the vector up. In which 
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t=nAt 

Flow domain - 

t=nAt 

b 

Figure 2. There are different possibilities for the location of 
the known nodal values depending on the initial and 
boundary data. Nodes 1-7 have known nodal values via 

boundary data, initial conditions, or previous time steps 

where the one in the p-vector of zeros is in the ith location. Equation (7) is the finite 
difference for the value of u at the ith node given we know the value of u at k + l  other 
nodes. 

The fact that the above schemes are kth-order accurate follows from the general 
properties of Lagrange interpolation  polynomial^.'^ 

2. kth-ORDER CLOSED FORM DIFFERENCE EQUATIONS FOR EQUATION ( 3 )  
WITH kth-ORDER DIRICHLET BOUNDARY CONDITIONS 

Using the technique discussed in Section 1 we can show in a very tedious but straightforward 
fashion that the value of u at node z (here z is the nodal number at which we are seeking the 
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value of u )  determined from (6) is given by 

where 

or 

cAt 
Ax 

a is the geometry factor, v=- is the Courant number, k is the order of polynomial 

interpolation, and L3(z) and L2(z) are the area co-ordinates of node z (see Figure 3(a)). The 
above equation holds provided k + 1 nodes have nodal values of u corresponding to the k + 1 
numbering locations xN, N = 1, . . . , k + 1 (see for example Figure 3(b)). 

It should be clear to the reader that the (bN(z) are Lagrange interpolating polynomials 
over 

min{F(xN): N = l , .  . . , k + l } r F ( z )  

5 max {F(xN) :  N = 1, . . . , k + 1) 

N 

N 

Or;L,< I A 0 c L,< I 

0 5 L,5 I p+\ I = L,+L,+L, 

4 - kAx - 
a. 

t = ( n +  

x,=12 
X,=8 
x3=3 
x4=4 
x,=5 

x7=7 
Xg6 

k =6 

b 

Figure 3. (a) The definitions of L,, L, and I,,. (b) 
The k + 1 numbering locations {x,} corresponding to 

known nodal values 
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where the X, correspond to the nodes with known nodal values of u. It should also be clear 
that 

+N(Xtn = 8Nm* 

We can easily show that if F ( z )  =F(xN) for some N E { ~ ,  . . . , k +  l}, then u ( z )  satisfies the 
shift condition, i.e. u ( z )  is exact. Indeed, 

and if 

then 

(14) 3(XN)-Ldz) 44 = 4 X N )  6.e. u; = ~~=~~Lz(xN)--L*(z)+a(L3(XN)-L3(Z)),). 

In  the above equations j is the spatial index and n is the temporal index. The left-most node 
on the base of the element corresponds to u;. From (13) and (14) we find 

r~ - n+LdxN)-L7fz) 
u,  - ~,+vrL?(x , ) -L, (z ) l .  

But u(x,t) =f(x-ct) solves (1) exactly when f(x-ct) is specified as an initial andlor boundary 
condition. Hence for our scheme to be exact we need 

f(x, - ca) = f(x, + Ax43-3(x,) - L3(z)I 
- Ctn - C A ~ [ ~ . ( X N )  - L3b)I) 

but clearly 

AXVV[L~(XN) - L3(z)I = C A ~ [ L ~ ( X N )  - L3(z)I 

The proof of our claim is complete. 
Let us now take a geometric look at (8)-(10). In particular let us examine (10) via Figure 

4. Let L,, L2, and L3 be area co-ordinates of Aafb. We construct CZ I/ 2. Since L, is 

characteristic 
passing through u(z) 

(n+l)nt 

1 nnt  

t = - - k A X y Z ) +  

(kCXAX-CAtk$l 

kAx ______I 

Figure 4. The geometry of the difference scheme 
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measured I to ab, the equation for E is given by L, = L,(z) and hence 1 Z 1 = kAxL,(z) 
(recall that L, is linear and varies from zero on ab to one at f). We construct 2g such that 
elaf which implies 1 Zg I = L,(z)At. We construct eZ by intersecting the characteristic 
(passing through - -  point z)  with Aafb. But the characteristic has slope lic, hence I Zg I = 
cAtL,(z). Now b h I  af implies Aabh - Aczg. Thus 

and hence 1 G 1 = ( k a  Ax - cAt)L,(z) + kAxL,(z). This last equation is identical to F(z) of 

We are now in a position to see geometrically what is happening in (8). We do so by 
examining Figure 5 .  Suppose we want to use (8)-(10) to determine the value of u at node z, 
given that from boundary and initial data we know u at x,, i = 1, . . . ,9. Let x:, i = 1, . . . , 9  
be the intercepts of the characteristic lines passing through x,, i = 1,. . . ,9,  respectively, with 
the nth time level. In Figure 5 x: = x, for i = 4, . . . ,9. From the previous discussion the 
distances from vertex a of Aax,z to the points x:, i = 1,. . . , 9  are given by F(x,), i = 
1, . . . ,9,  respectively (since L3(x,) = 0 for i 2 4  in Figure 5 ,  F(x,) corresponds to the distance 
from vertex a to x,). We thus see that the Lagrange interpolation formula (8)-(10) assigns to 
the points x:, i = 1 , .  . . , 9  the weights u(x,). The value of u(z) is then determined at z' 
via Lagrange interpolation between the unequally spaced points x:, i = 1 , .  . . ,9.  

Geometrically it is also clear why, when F(z)=F(x,), the scheme is exact. Indeed, if 
F ( z )  = F(x,) the characteristics passing through X, and z are the same. Hence, since u(xN) 
is assumed exact, u(z) must be exact. 

Let us now examine (8)-(10) in more detail. In particular suppose the k + 1 known nodal 
values of u are at time level n (Figure 2(a)). In this case L3(xN) = 0, N = 1, . . . , k + 1 where k 
is again the order of polynomial interpolation. Moreover if u(xJ corresponds to uI;, x, 
corresponds to uYil,. . . , xk+, corresponds to u Y + ~ ;  then 

(10). 

(n  + I h t  

k = 8  

nAt 

Figure 5. The characteristic explanation of the difference 
scheme 
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Thus 

F(xN) = N - 1. 

Also if we let z correspond to u;:& then L3(z)  = 1, L2(z)  = 0 and hence 

F ( z )  = ka - V. 

Equations (8)-(10) now reduce to 

m # N  

which is identical to the kth-order scheme of Cushman and Huang6. It is also pointed out by 
Cushman and Huang6 that (15) reduces to the following special cases: 

(i) k = 1, (Y = 0; unstable Euler 
(ii) k = 1, (Y =$: Lax method 

(iii) k = 1, (Y = 1: upstream differencing 
(iv) k = 2, (Y = $: Lax-Wendroff single-step 

At this point it seems appropriate to comment on the stability of (8)-(10). The most 
obvious stability constraint is that of the C.F.L. necessity condition, i.e. the difference 
scheme must contain the characteristic data. One easily checks the C.F.L. criteria for a 
particular scheme by visual inspection. 

We have not been able to establish sufficient conditions for the stability of the very general 
equations (@-(lo) by the von Neumann or any other method. Sufficient conditions for this 
general equation seem to be difficult to derive. One can of course derive sufficient conditions 
for specific cases of (@-(lo). For example, Cushman and Huang6 have found that necessary 
and sufficient conditions for the stability of (15) are given by 

l v - k a + 0 - 5 k 1 ~ 1  if k iseven (16) 

I z ~ - k ( ~ + 0 . 5 k l s O . 5  if k isodd. (17) 

and 

In Section 4 we will also check (at least numerically) the stability of the schemes for 
various boundary conditions. 

3 .  QUASILINEAR EQUATIONS 

Let us now briefly examine the more interesting system of quasilinear hyperbolic equations. 
Equations (8)-(10), which was developed from ( l ) ,  may be extended in a very natural way to 
the quasilinear systems case. Consider the general quasilinear hyperbolic equation 

U, + A(u, x, t)u, = 0 (18) 
where A is an I X I matrix with real eigenvalues, and u is an 1 x 1 column vector. To apply (8) 
to (18) we merely write (18) in the following discrete form: 

m # N  
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where F(z) = (kaI-A;)L3(z)+ kIL,(z), Ar = (At/Ax)Ar, I is the 2x2 identity matrix, and 
A: is an average value of A at the nth time level corresponding to node j .  

If (18) is non-linear, then the accuracy of (19) will depend on the choice of AT. One 
method for evaluating AT is to consider only the eigenvalues of the matrix corresponding to 
each characteristic and find the appropriate point for each eigenvalue by tracing back along 
the corresponding characteristic direction to find the intersection of the characteristic and the 
initial data line. 

A viable alternative method for evaluating boundary conditions for quasilinear systems is 
to apply Galerkin’s method to the non-linear equations themselves, rather than to a linear 
approximating system. This method gives rise to a system of non-linear equations of order 
(k + l)k/2 that must be solved at several nodes near the boundary. Although it is impractical 
to use this method everywhere in the flow domain, it is not impractical to use it near the 
boundaries alone. For example, one could use this method near the boundaries and use the 
method of Strang4 at interior nodes and hence maintain kth-order accurate schemes. 

4. NUMERICAL RESULTS 

We consider first the most elementary of the linear wave equations, equation (1). If we set 

c = 0.5, 

u(x, 0) =sin (x), x 2 0 

and 

u(0, t )  = sin (-ct), t 2 0 

then the solution to (1) is given by u(x, t) =sin (x - ct) .  
Figure 6 represents the technique we used to evaluate the boundary condition at x = 0. We 

let j be the spatial index with j =0 on the boundary. When k = 4 we determine u;+l from 

A k = 4  

(b) 

Figure 6. The orientation of the element for the vertical 
boundary data of the linear equation 
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ut+1/2 ,  u;, j = 0, . . . , 3 .  For j > 1, ur" is determined from and u;+, i = 0, 1, 2. When 
k = 8 we determine u;" from uGiif4, i = 0, .  . . , 3 ,  and u;? j = 1,. . . , 5 .  The value u;+' is 
determined from utid4, i = 0,1,2, and u)+*,  j = 1,. . . , 6  while the value of u;+' is 
determined from u;+'l4 and u;, j = 0, . . . , 7 .  For j >  3 ,  u;+* is determined from u;+~ and u?-~, 
i =o, . . . ? 4. 

Figure 7 represents a plot of the error versus j A x  for k = 4 with A x  = ~/40. In this case 
(Y = 0.5, A t  = A x ,  and the results are presented after 80 time steps. The error plot beyond 
j h x  = 80 is a periodic reflection of the error between j A x  = 40 and j A x  = 80. Figure 8 is 
similar to Figure 7 ,  however, now k = 8. In Figure 8 the somewhat erratic nature of the error 
is due to the approach to machine precision (i.e. round-off error). 

If we again consider (l), only we now use the data 

c = 0.5, 

u(x, 0) =sin (x), x 2 0  

and 

u(x, t)=sin(x-ct) on t=-x, XSO 
then the solution to (1) is again u(x, t )  =sin (x - ct). This problem presents a good illustration 
of the value of allowing 1y (which governs the geometry of the element) to vary. 

2000 

* 1000 - 
LI) 

Figure 7 .  Numerical results for (1) with 4th-order interpolation and a vertical 
boundary 
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0 .O 20 .o 60.0 80.0 1 ) .O 

Figure 8. Numerical results for (1) with 8th-order interpolation and a vertical 
boundary 

k = 4  

-AX-- 

(a) 

k=8 

- Ax - 
( b) 

Figure 9. The orientation of the element for the slant boundary data of the 
linear equation 
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Figure 9 represents the non-standard finite element technique used to evaluate the 
boundary condition at t = -x, x 5 0  on which we define the spacial index j to be identically 
zero. For k = 4 and 8 we determine the value of u;+l, u;+', etc. as in Figure 6, however the 
triangles are now oriented differently. In particular for the nodes close to the boundary we 
chose (Y such that one side of the triangle (see Figure 9) is oriented parallel to t = -x, x I 0. 
We use this orientation until we are sufficiently far from the boundary to use only values of u 
at the nth time level, at which time, in order to maintain stability, we shift to (Y =i. Figures 
10 and 11 represent plots of the error jAx for the above initial data, Ax = d40, and At  = Ax. 

We now consider the more complex quasilinear inviscid Burgers' equation given by 

ut+uux=o,  1<x<2 ,  O < t S l O  (20) 
subject to 

u(0, x )  = ( 2 X y 2  
u (t, 1) = ( t2 + 2)1'2 - t, U( t, 2) =: ( t2 + 4)'12 - t .  and 

The exact solution to (20) and (21) may be found in Reference 7 and is given by 
(21) 

u(t, x ) = ( t 2 + 2 x ) ' / 2 - t .  (22) 

This solution is well behaved in the domain of interest so that shocks do not occur. Moreover 
the problem allows the use of both upstream and downstream boundary conditions. It should 

I .o 

Figure 10. Numerical results for (1) with 4th-order interpolation and a slant 
boundary 
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Figure 11. Numerical resuks for (1) with 8th-order interpolation and a slant 
boundary 

be noted that in this case the characteristic is non-linear (dxldt = (t2+2x””- t). We would 
also like to mention that generally for physically realistic problems, one would not specify 
Dirichlet B.C.s at both upstream and downstream locations. However this particular problem 
is well posed. 

As in our first problem the numerical results to follow are all with (Y = 1/2 (a = 1/2 is 
chosen strictly for ease in programming). Figure 12 is with quadratic interpolation, A t =  
0.025, Ax = 0.05, and 40 time steps. Note that in this case there is no need to introduce 
non-exact boundary conditions. To get the results pictured we have used the simple iteration 
technique of Cushman and Huang6. The iteration technique consists of using the predicted 
value of u after one step in the iteration as a guess for u at the next iteration step. To be 
more precise: Suppose we are trying to find ur+’. To do so, at node j we solve 

u, + U)& = 0 

u, + lu;+lU, = 0. 

(23) 

(24) 
In all cases, after just a few iteration steps, we have three successive guesses converging to 
within lo-’’. 

Figures 13 and 14 are similar to Figure 12 but with k = 4 and 6, respectively. In this case 
the boundary conditions at x = 1 and x = 2 are handled as in the first linear problems. 

(which is linear) to obtain a guess lu;+l for uY+l. We then solve 
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Figure 12. Quadratic interpolation of Burger’s equation with iteration. Boundary 
conditions were evaluated exactly 
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Figure 13. Quartic interpolation of Burger’s equation with iteration. Boundary 
conditions are evaluated via (8)-(10) 
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Figure 14. 6th-order interpolation of Burger’s equation with iteration. Boundary 
conditions are evaluated via @)-(lo) 

Although we have not been able to prove it analytically the numerical results for the 
non-linear equation suggest that the iteration produces kth-order accuracy. However, we 
should again point out that the numerical approximations to the linear equation can be 
shown analytically to be kth-order accurate (see Reference 14 or merely use the well known 
facts concerning Lagrange interpolation). 

Let us now consider the shallow water equations. The shallow water equations with an 
appropriate set of boundary and initial data are given by 

U, + A(u)u, = 0 (25) 
subject to 

u(x, 0) = (&) and v(0, t )  = 20+ t, t 2 0 ,  

where u = (:) and 

The exact solution to this problem can be found via the method of characteristics and is 
presented graphically in Figure 15. The boundary conditions for this problem are evaluated 
as in the first of the linear problems where we maintain a =$. To use our linear difference 
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Figure 15. The exact solution of (20) for u and at time t = 1 

21.25 

21.011 

20.75 

20 -50 =r 

20.25 

20 .oo 

19.75 
I0 

K: Y RLP: .5 DT:  .@E5 DX: .50 NSTEP: YO 

ITERR7 I ON : NO 
___- 

1-U-t ERROR -X- 
* V i  ERECS + 

I I I I I 
0 . 00 5 .oo 10.00 15.00 20.00 25 .OO 

X 

Figure 16. Numerical results for (20) with 01 = 112 and no iteration 
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Figure 17. Numerical results for (20) with a = 112 and iteration 

00 

equation on (25) we must evaluate A at some average ii of u. For simplicity when we were 
trying to find ur::, we chose to evaluate A at u=uy. With this in mind, Figure 16 is an error 
plot versus x for k = 4, At = 0.025 and Ax = 0.5 at t = 1. As one can see, the results are quite 
good with the exception of some slight dispersion at the wave front. 

We were able to improve on the results presented in Figure 16 by the iteration process 
already mentioned. Figure 17 represents an error plot for the iterative method. Note the 
considerable improvement for x s 1 5  (the error is of the order of 10-lo). 

To conclude this section we would like to briefly comment on stability. We already know 
((16) and (17)) the necessary and sufficient conditions for the stability of the discrete version of 
(1) (without applying boundary conditions). We numerically tested (8)-( 10) to find stability 
constraints when Dirichlet boundary conditions were used. We found that if (16) and (17) 
were satisfied in the interior, then we were able to apply the discrete boundary condition, 
without any stability problems. That is, the stability of (8)-(10) on the interior nodes was the 
major factor controlling global stability. 

5.  CONCLUSIONS 

In this article we have presented a method for developing kth-order accurate, multilevel 
difference schemes for linear and quasilinear systems of hyperbolic equations with Dirichlet 
boundary conditions. The method is a straightforward application of the non-standard finite 
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element approach. This approach consists of applying Galerkin’s method to a single element 
(with kth-order Lagrange interpolating polynomials), partitioning out the k + 1 equations 
corresponding to the known nodal values (from boundary and initial data), and solving the 
resulting system. In a search of the literature we were unable to find any similar method for 
developing difference equations, although the Strang references provide a means for de- 
veloping similar equations for the linear problems. 

A very general difference scheme was presented for the linear inviscid Burger’s equation 
with Dirichlet boundary conditions. Via a simple geometric argument, the scheme was shown 
to be similar to the method of characteristics. That is, one projects (along the characteristic) 
each known nodal value to a given base time, fits a kth-order (possibly unequally spaced) 
Lagrange polynomial through these k known values at the base time, and finally predicts the 
unknown we are seeking by projecting along the characteristic passing through the node 
(with the corresponding unknown) to its interception with the Lagrange interpolating 
polynomial. If 

the scheme was shown to satisfy the shift condition. 
In a straightforward fashion we illustrated how the linear scheme could be used to solve 

quasilinear equations. We also presented error plots using the closed form equation for the 
linear and non-linear inviscid Burgers’ equation and the shallow water equations. 

If one wants highly accurate solutions for a specific quasilinear equation near a Dirichlet 
boundary, it seems reasonable to apply the non-standard finite element method in its fully 
non-linear form. Depending on the problem under consideration and the accuracy desired, 
the cost of this approach may be justified. However, this will depend very strongly on the 
problem under consideration. For our purposes we found it sufficient to use the linear 
difference schemes with iteration and thus maintain a closed form system. 

One may also wish to investigate the effects of using more general curved sided 
isoparametric elements on curvilinear boundaries and non-linear problems. 
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